Telegram Group & Telegram Channel
Объясните, как работает Transformer?

Архитектура Transformer используется преимущественно в языковых моделях. Их обучают на большом количестве текстов. Наиболее известная задача, в которой используются такие модели, это, конечно, генерация новых текстов. Нейросеть должна предсказать следующее слово в последовательности, отталкиваясь от предыдущих. Transformer же изначально был разработан для перевода. 

Его архитектура состоит из двух основных блоков:

▪️Энкодер (Encoder) (слева).
Этот блок получает входные данные (инпут) и создаёт их представления в векторном пространстве.
▪️Декодер (Decoder) (справа). 
Этот блок использует представления, полученные от энкодера, а также другие входные данные, чтобы сгенерировать последовательность. 

Основная фишка архитектуры Transformer заключается в наличии специального слоя — attention. Этот слой как бы указывает модели обращать особое внимание на определённые слова в последовательности. Это позволяет более эффективно обрабатывать контекст и улавливать сложные зависимости в тексте.

Во время обучения Transformer энкодер получает инпут (предложение) на определённом языке. Декодеру дают то же предложение, но на другом, целевом, языке. В энкодере слой attention может использовать все слова в предложении для создания контекстуализированного представления каждого слова, а декодер использует информацию об уже сгенерированных словах для предсказания следующего слова в последовательности. 

В целом, ключевой особенностью механизма attention является его способность динамически фокусироваться на различных частях входной последовательности при обработке каждого слова, что позволяет модели лучше понимать контекст и нюансы языка. 

#глубокое_обучение
#NLP



tg-me.com/ds_interview_lib/287
Create:
Last Update:

Объясните, как работает Transformer?

Архитектура Transformer используется преимущественно в языковых моделях. Их обучают на большом количестве текстов. Наиболее известная задача, в которой используются такие модели, это, конечно, генерация новых текстов. Нейросеть должна предсказать следующее слово в последовательности, отталкиваясь от предыдущих. Transformer же изначально был разработан для перевода. 

Его архитектура состоит из двух основных блоков:

▪️Энкодер (Encoder) (слева).
Этот блок получает входные данные (инпут) и создаёт их представления в векторном пространстве.
▪️Декодер (Decoder) (справа). 
Этот блок использует представления, полученные от энкодера, а также другие входные данные, чтобы сгенерировать последовательность. 

Основная фишка архитектуры Transformer заключается в наличии специального слоя — attention. Этот слой как бы указывает модели обращать особое внимание на определённые слова в последовательности. Это позволяет более эффективно обрабатывать контекст и улавливать сложные зависимости в тексте.

Во время обучения Transformer энкодер получает инпут (предложение) на определённом языке. Декодеру дают то же предложение, но на другом, целевом, языке. В энкодере слой attention может использовать все слова в предложении для создания контекстуализированного представления каждого слова, а декодер использует информацию об уже сгенерированных словах для предсказания следующего слова в последовательности. 

В целом, ключевой особенностью механизма attention является его способность динамически фокусироваться на различных частях входной последовательности при обработке каждого слова, что позволяет модели лучше понимать контекст и нюансы языка. 

#глубокое_обучение
#NLP

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/287

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from cn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA